Is the syntax used to interact with MongoDB. It is similar to JSON and JavaScript-like in its structure, which makes it straightforward for developers familiar with JSON or JavaScript.
use database_name
show dbs
Insert a document into a collection:
db.collection_name.insertOne({ name: "Alice", age: 25 })
Insert multiple documents:
db.collection_name.insertMany([
{ name: "Bob", age: 30 },
{ name: "Charlie", age: 35 }
])
db.collection_name.find()
db.collection_name.find({ age: 30 })
db.collection_name.find({ age: { $gte: 30 } }, { name: 1, _id: 0 })
{ $gte: 30 }
: Matches
age >= 30
.
{ name: 1, _id: 0 }
: Return only the
name
field (1 = include, 0 = exclude).
db.collection_name.findOne({ name: "Alice" })
db.collection_name.updateOne(
{ name: "Alice" }, // Filter
{ $set: { age: 26 } } // Update
)
db.collection_name.updateMany(
{ age: { $lt: 30 } }, // Filter
{ $set: { status: "young" } } // Update
)
db.collection_name.replaceOne(
{ name: "Alice" }, // Filter
{ name: "Alice", age: 27, city: "NYC" } // New Document
)
db.collection_name.deleteOne({ name: "Bob" })
db.collection_name.deleteMany({ age: { $gte: 30 } })
These operators are used in the query object to filter data.
Operator | Description | Example |
---|---|---|
$eq |
Equal | { age: { $eq: 25 } } |
$ne |
Not equal | { age: { $ne: 25 } } |
$gt |
Greater than | { age: { $gt: 25 } } |
$gte |
Greater than or equal | { age: { $gte: 25 } } |
$lt |
Less than | { age: { $lt: 25 } } |
$lte |
Less than or equal | { age: { $lte: 25 } } |
$in |
Matches any value in array | { age: { $in: [25, 30, 35] } } |
$nin |
Does not match any value in array | { age: { $nin: [25, 30] } } |
$and
: Matches all conditions.$or
: Matches any condition.$not
: Negates a condition.Example:
db.collection_name.find({
$or: [{ age: { $lt: 30 } }, { name: "Charlie" }]
})
Query inside nested fields:
db.collection_name.find({ "address.city": "New York" })
Find documents where an array contains a value:
db.collection_name.find({ hobbies: "reading" })
Find documents where an array contains multiple values:
db.collection_name.find({ hobbies: { $all: ["reading", "coding"] } })
Find documents where an array has a specific size:
db.collection_name.find({ hobbies: { $size: 2 } })
Use for advanced data manipulation and analysis.
db.collection_name.aggregate([
{ $group: { _id: "$age", count: { $sum: 1 } } }
])
db.collection_name.aggregate([
{ $match: { age: { $gte: 25 } } },
{ $project: { name: 1, age: 1 } },
{ $sort: { age: -1 } }
])
Indexes improve query performance.
db.collection_name.createIndex({ age: 1 }) // 1 = Ascending, -1 = Descending
db.collection_name.getIndexes()
db.collection_name.dropIndex({ age: 1 })
show collections
db.collection_name.drop()
db.dropDatabase()
$match
: Filters
data.$group
: Groups
data by a field and applies aggregations.$sort
: Orders the
results.$project
:
Includes/excludes specific fields.$lookup
: Performs
a join with another collection.db.orders.aggregate([
{ $match: { status: "shipped" } }, // Filter shipped orders
{ $group: { _id: "$customerId", totalSpent: { $sum: "$amount" } } }, // Group by customer and sum their spending
{ $sort: { totalSpent: -1 } }, // Sort by total spent, descending
{ $limit: 5 }, // Top 5 customers
{ $lookup: {
from: "customers",
localField: "_id",
foreignField: "customerId",
as: "customerDetails"
}
} // Enrich with customer details
])
MongoDB supports multi-document ACID transactions in replica sets.
const session = db.getMongo().startSession();
session.startTransaction();
try {
const ordersCollection = session.getDatabase("store").orders;
const inventoryCollection = session.getDatabase("store").inventory;
ordersCollection.insertOne({ orderId: 1, product: "Book", quantity: 1 });
inventoryCollection.updateOne(
{ product: "Book" },
{ $inc: { stock: -1 } }
);
session.commitTransaction();
} catch (error) {
session.abortTransaction();
console.error("Transaction failed:", error);
} finally {
session.endSession();
}
startTransaction()
and
commitTransaction()
for atomic operations.
db.collection_name.createIndex({ age: 1, name: 1 })
db.collection_name.createIndex({ description: "text" })
db.collection_name.createIndex({ "$**": 1 })
Use explain()
to analyze query
performance:
db.collection_name.find({ age: 25 }).explain("executionStats")
db.collection_name.find({ $text: { $search: "apple" } })
db.collection_name.createIndex({ title: "text", description: "text" }, { weights: { title: 10, description: 2 } })
db.collection_name.find({ $text: { $search: "apple -banana" } })
-
to exclude terms.db.places.createIndex({ location: "2dsphere" })
db.places.find({
location: {
$near: {
$geometry: { type: "Point", coordinates: [longitude, latitude] },
$maxDistance: 1000 // Meters
}
}
})
db.places.find({
location: {
$geoWithin: {
$geometry: {
type: "Polygon",
coordinates: [[[lng1, lat1], [lng2, lat2], [lng3, lat3], [lng1, lat1]]]
}
}
}
})
db.collection_name.updateOne(
{ _id: 1, "items.name": "apple" },
{ $set: { "items.$.quantity": 5 } }
)
db.collection_name.updateOne(
{ _id: 1 },
{ $push: { tags: "newTag" } }
)
db.collection_name.updateOne(
{ _id: 1 },
{ $pull: { tags: "obsoleteTag" } }
)
db.createCollection("products", {
validator: {
$jsonSchema: {
bsonType: "object",
required: ["name", "price"],
properties: {
name: {
bsonType: "string",
description: "must be a string and is required"
},
price: {
bsonType: "double",
minimum: 0,
description: "must be a double and is required"
}
}
}
}
})
Track real-time changes to your collections.
const changeStream = db.collection_name.watch();
changeStream.on("change", (change) => {
console.log("Change detected:", change);
});
mongodump --db database_name --out /backup/directory
mongorestore --db database_name /backup/directory/database_name
Enable Authentication:
mongod --auth
Create Users with Roles:
db.createUser({
user: "admin",
pwd: "password",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]
});
Limit Network Exposure:
bindIp
in mongod.conf
.
Use Proper Indexing:
db.currentOp()
and create indexes accordingly.
Sharding for Scalability:
Avoid Large Documents:
Enable Write Concern:
db.collection_name.insertOne({ key: "value" }, { writeConcern: { w: 1 } });
When comparing SQL (relational databases) and MongoDB (a NoSQL database), it largely depends on your specific use case, the type of data you’re working with, and the skills of your team. Both have their strengths and weaknesses, so let’s break it down to help you understand which might be better or easier for your needs.
SQL databases are relational databases that organize data into tables with rows and columns, and relationships between data are defined explicitly (e.g., foreign keys). Examples include:
MongoDB is a NoSQL database that stores data in a flexible, JSON-like format (called BSON). It is schema-less, meaning you don’t have to define a rigid structure for your data.
Aspect | SQL (Relational Databases) | MongoDB (NoSQL Database) |
---|---|---|
Data Structure | Fixed schema with tables, rows, and columns. Relationships between tables are explicitly defined. | Flexible schema with JSON-like documents (BSON), suitable for semi-structured or unstructured data. |
Relationships | Strongly supports complex relationships using joins and foreign keys. | Stores data as embedded documents, reducing the need for joins but making relationships less explicit. |
Scalability | Vertically scalable (adding more power to a single server). | Horizontally scalable (easily adds more servers). |
Ease of Use | Requires designing and maintaining a schema, but querying with SQL is widely understood. | Easier to start with because of its schema-less nature, but querying requires learning MongoDB syntax. |
Performance | Best for structured, predictable data and complex queries. | Better for high write/read loads and large volumes of unstructured or semi-structured data. |
Query Language | Standard SQL, familiar and widely used. | MongoDB Query Language (MQL), uses JSON-like syntax, simpler for some tasks. |
Flexibility | Less flexible because of rigid schema requirements. | Highly flexible due to its schema-less design, making it ideal for rapidly evolving apps. |
Transaction Support | Strong ACID compliance for transactional systems like banking, e-commerce, etc. | Supports transactions but is less mature than relational databases for complex transactions. |
Indexing | Supports various indexing strategies. | Also supports indexing but shines with geospatial and other modern types of indexes. |
SQL databases are better when:
You Have Structured Data:
You Need Relationships:
You Need Transactions:
You Need Complex Queries:
MongoDB is better when:
You Have Unstructured or Semi-Structured Data:
You Need Scalability:
Your Schema Evolves Frequently:
Speed and Simplicity:
SQL:
MongoDB:
Go with SQL if:
Go with MongoDB if:
SQL Use Case:
MongoDB Use Case:
Neither SQL nor MongoDB is universally “better.” Each excels in specific scenarios. If you’re using MongoDB already and it works well for your projects, there’s no need to switch. However, if you find MongoDB’s schema-less nature leading to confusion or inefficiencies, SQL may be worth considering.